Heterospecific Tree Density and Environmental Factors Affect Afzelia africana Sm. Population Structure in the Pendjari Biosphere Reserve, West Africa: Implications for Management and Restoration

Justin A. Atanasso¹, Sylvanus Mensah¹, Akomian F. Azihou², Bruno A. Djossa³, Romain Glélé Kakai¹, and Achille E. Assogbadjo²

Abstract
Information on how abiotic and biotic factors affect species population structures and regeneration are critical for understanding plant growth in natural habitats. Here, we used the data from three spatially distinct populations of Afzelia africana Sm. in the Pendjari Biosphere Reserve in Benin, to determine how the species population structures respond to abiotic and biotic factors. Afzelia africana population structures were studied using several parameters including basal area, tree height, density of successive diameter classes, and size class slope. We tested for individual effects of abiotic (mound density, soil type, and terrain slope) and biotic (heterospecific tree density) factors on the species population structure. We also tested for similarity of species composition among studied A. africana population stands. Results revealed a tree density structure with mature individuals, and size class distribution indicating a recruitment bottleneck at the juvenile stage (10–20 cm diameter), possibly due to mammal browsing, natural and artificial fires. Heterospecific tree density was positively associated with A. africana adult density but negatively related to the species growth parameters (mean diameter, basal area, and tree height). These results indicate some degrees of niche overlap between A. africana and coexisting species but also partly reflect A. africana tolerance and adaptation to limited resources environment. Soil type significantly influenced both basal area and regeneration density, greater values being observed on silt-sand-rocky soils. Basal area was higher on steeper slope, probably a result of species conservative strategies. These findings were discussed in line with management and restoration action needs in the Pendjari Biosphere Reserve.

Keywords
abiotic factors, Importance Value Index, size class distribution, soil type, slope, tree height

Introduction
Afzelia africana Sm. (Fabaceae-Caesalpinioideae) is a dry forest and woodland multipurpose tree used in traditional livestock systems, folk medicine, and as fuel wood by local people in West and Central African geographical areas of occurrence and dominance (Balima, Nacoulma, Ekué, Kouamé, & Thiombiano, 2018; Bationo, Ouedraogo, & Guinko, 2001; Houehanou, Assogbadjo, Glélé Kakai, Houniato, & Sinsin, 2011; Mensah, Houéhanou, et al., 2016; Séwadé, Azihou, ¹Laboratory of Biomathematics and Forest Estimation, University of Abomey-Calavi, Benin
²Laboratory of Applied Ecology, University of Abomey-Calavi, Benin
³Ecole de Foresterie et d’Ingénierie du Bois, Université Nationale d’Agriculture, Ketou, Benin
Received 14 July 2018; Revised 16 November 2018; Accepted 11 December 2018
Corresponding Author:
Sylvanus Mensah, Laboratory of Biomathematics and Forest Estimation, University of Abomey-Calavi, Benin.
Email: sylvanus.m89@gmail.com

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Fandonhan, Houéhanou, & Houinato, 2016). In the agro-pastoral zone of Benin, the branches are pruned by Fulani ethnic groups, and the foliage serves as fodder to feed their livestock during the dry season (Sewadé et al., 2016). Its wood is durable even for usage in permanent humid conditions, making the timber an excellent asset for exploitation in the international market. The multiple use and the subsequent pressure on its natural populations have put the species on priority research agenda in Benin (Amahowe, Bizou, Natta, & Balagueman, 2017; Assogbadjo, Mensah, & Glélé Kakaï, 2017; Mensah, Houéhanou, Sogbohossou, Assogbadjo, & Glélé Kakaï, 2014; Mensah, Houéhanou, et al., 2016), being listed among the top five native trees species that require urgent conservation actions (Akpona, Assogbadjo, Fandonhan, & Glélé Kakaï, 2017).

Abiotic and biotic factors are presumed to drive vegetation patterns, plant structure, and survival (Johnson, Condit, Hubbell, & Comita, 2017). As pointed out in some recent small-scale studies, plant diversity and structure partly depend on habitat quality and climate-related factors (Assogbadjo et al., 2017; Mensah, Houéhanou, et al., 2016). At larger scales, climatic conditions may influence an organism’s life cycle and performance, whereas, at smaller scales, local environmental variation in edaphic or topographic factors (elevation, aspect, slope, etc.), resources availability, and species competitive abilities would likely codetermine species structural and dominance patterns (Mensah, Salako, Assogbadjo, & Glélé Kakaï, 2018; Zhang, Chen, Liu, & Pei, 2016). For example, environmental factors such as soil physical properties and slope were pointed out as potential drivers of vegetation structure and distribution (Gonçalves, Filho, Vendrame, & Telles, 2013). Therefore topography- and relief-related conditions (Assédé, Azihou, Adomou, Oumorou, & Sinsin, 2015) would also influence *A. africana* population’s structure.

While it is crucial that we understand how abiotic factors determine the structure of tree species in undisturbed habitats, it is equally important that we understand how biotic drivers (e.g., neighbor plants identity, heterospecific tree density), through both inter- and intra-specific competition for resources, affect species individual growth, especially in hyper-diverse plant species assemblages (Johnson et al., 2017). Although several local and regional scale research studies have been conducted on *A. africana* in West Africa, most have fallen short of addressing such ecologically important aspects, especially in protected areas. Currently, there is substantial documentation on the species use patterns, values and management (Balima et al., 2018), human disturbance, land use and climatic influence (Mensah et al., 2014; Nacoulma, Lykke, Traore, Sinsin, & Thiombiano, 2017; Sinsin, Eyog-Matig, Assogbadjo, Gaoue, & Sinadouwirou, 2004), habitat floristic compositions (Bonou, Glélé Kakaï, Assogbadjo, Fonton, & Sinsin, 2009; Mensah, Houéhanou, et al., 2016), and structure and height-diameter allometry (Amahowe et al., 2017; Assogbadjo et al., 2017). In the meantime, we still lack information on how the species responds to local environmental variation in protected habitats. Similarly, we lack information and understanding on how biotic drivers (e.g., heterospecific tree density) influence *A. africana* population dynamic, including regeneration potential. This study was guided by the expectations that environmental factors (soil topography, terrain slope, and termite mounds) and heterospecific trees density would influence *A. africana* population structures. It is also expected that these environmental factors would influence the species recruitment process. As most savannah trees, *A. africana* occurs in aggregative patterns in spatially distant populations. Therefore, we expect that the species co-occurs with other characteristic and dominant trees species within its natural habitat, as a result of habitat integrity and species assemblages.

The main objective of this study was to determine how abiotic (edaphic and topographic variables) and biotic (heterospecific tree density) factors affect *A. africana* population structure in the Pendjari Biosphere Reserve (PBR) in Benin. Using data from three spatially distant *A. africana* stands, we assessed the species population structures using parameters such as tree density, mean diameter, basal area, tree height, density of successive diameter classes, coefficient of skewness, and size class slope. We next tested for the individual effects of abiotic (mound density, soil type, and terrain slope) and biotic factors (heterospecific tree density) on the species population structure. Finally, we tested for similarity of species composition among the three *A. africana* population stands and identified key characteristic and dominant species in *A. africana* natural stands.

Methods

Study Area

This study was carried out in the PBR located in the Sudanian zone of Benin (10°30’– 11°30’N; 0°50’–2°00’E). The PBR covers an area of 4,661 km², which includes the National Park of Pendjari (2,660 km²), the hunting zone of Pendjari (1,750 km²), and the hunting zone of Konkombri (251 km²) (Azihou, Glélé Kakaï, Bellefontaine, & Sinsin, 2013; Sokpon, Affoukou, Amahowe, & Gandji, 2008). The National Park of Pendjari is the core zone of the reserve, where the vegetation is less disturbed due to protection from human activities. Both the core and hunting zones (hunting zone of Pendjari and hunting zone of Konkombri) are surrounded by a buffer zone named control occupation
zone, where human activities are under control (Assédé, Adomou, & Sinsin, 2012; Coetzee, Witkowski, & Erasmus, 2014). The area falls within the Sudanian climate. Rain falls from May to October, with annual

Figure 1. Standing *Afzelia africana* tree in the Pendjari Biosphere Reserve.

Figure 2. Maps showing the location of the Pendjari Biosphere Reserve in Benin and of the study sites (*Afzelia africana* populations) in the Pendjari Biosphere Reserve.

Figure 3. View of *Afzelia africana* population near Batia in the Pendjari Biosphere Reserve.
value of 1,100 mm and mean annual temperature of 26.6°C (Philip & Rob, 2015). The vegetation is a mosaic of shrubs and trees, woodland savannahs, and grasslands (Azihou et al., 2013; Sokpon et al., 2008). For the purpose of this study, a preliminary field exploration was conducted to locate *A. africana* (Figure 1) natural stands. Three populations distant by at least 10 km were identified on the basis of the occurrence and abundance of the species. They were located near Batia (10°94'N-01°56'E), Bondjagou (11°05N-01°66'E), and Bali (11°12'N-01°51'E). These stands were measured spatially (using GPS Garming 62S), and their area cover was approximately 17 ha, 27 ha and 8 ha, respectively (Figures 2 to 5; Supplementary Material).

Sampling and Data Collection

Three plots of 4 ha each were established within each *A. africana* stand. Inside each plot, 10 rectangular subplots of 200 m × 20 m were laid out in a contiguous design to systematically record all *A. africana* individuals as well as neighboring species (i.e., heterospecifics). The following variables were measured: number of stems; basal diameter (bd) for seedlings (bd ≤ 1 cm) and saplings (1 cm < bd < 5 cm) and dbh (diameter at breast height) for ≥ 5 cm. Occurrence of termite mounds and terrain slope were also recorded. Two types of soil were identified across the three *A. africana* populations: rocksand-silt (ROCSS) and sand-silt (SS) soils.

Data Analysis

Structural and population parameters (tree density, mean diameter, basal area, Lorey height and regeneration density) were calculated for each population (See Table 1 for formula), and mean values were compared among the three populations by performing a one-way analysis of variance. In the case of significant difference (p < .05), the Student–Newman–Keuls post hoc test was used to compare the species. Prior to the analysis of variance, response variables (tree density, mean diameter, basal area, Lorey height, and regeneration density) were checked for normality and homoscedasticity.

The overall diameter distributions were compared between each pair of populations using the Kolmogorov–Smirnov distribution test (Helm & Witkowski, 2012). To better depict the size class distribution (SCD) patterns within each population, diameter size classes distributions were established using the following delimitations: 0 to 10 cm, 10 to 20 cm, 20 to 30 cm, 30 to 40 cm, 40 to 50 cm, 50 to 60 cm, 60 to 70 cm, and 70 to 80 cm. Diameter SCD slopes were also computed as indicators of population structure, following Condit, Sukumar, Hubbell and Foster (1998), Martins and Shackleton (2017), and Mensah, Egeru, Assogbadjo and Glélé Kakaï (2018). Negative slopes indicate good recruitment, with more individuals in smaller size classes than in larger size classes, while positive slopes indicate poor or little recruitment. Flat slopes denote constant or equal number of individuals in small and large size-classes. The quotient (Q) between successive diameter size classes was also calculated to assess the species population stability within each stand (Martins & Shackleton, 2017; Traoré et al., 2013). Constant quotients are indicative of stable species population, while variable quotient values indicate unstable population (Martins & Shackleton, 2017). For better visual comparisons between populations, quotient values were used to generate one single graph for each population. Simpson Dominance Index and Permutation Index were also computed to assess the stability from SCD perspective. More specifically, the Simpson Dominance Index was used to assess size class evenness (Martins & Shackleton, 2017). It indicates how even is the SCD, regardless of the order in
which size classes are positioned. The Permutation Index (also a measure of stability) is the aggregation of the absolute distances between the predicted and the actual ranking of all size classes (Table 1).

We next tested for the effects of heterospecific tree density and environmental factors on the structure of *A. africana* populations. We ran separate linear models using tree density, mean diameter, basal area, Lorey height, and regeneration density as response variables, and soil type, slope, density of mound and heterospecific tree density as explanatory variables.

Finally, we tested for similarity of heterospecific trees composition among the three *A. africana* populations by performing a nonmetric multidimensional scaling and an analysis of similarity. We further assessed the species' Importance Value Index (IVI), as indicator of species relative to ecological importance. The IVI was calculated for each heterospecific tree to identify key dominant species in *A. africana* natural habitats. For each population, the first 10 heterospecific trees with highest IVI were graphically presented. All statistical analyses were performed using R statistical software, version 3.3.2 (R Core Team, 2016).

Results

Density and Structure of *A. africana* Populations

Adult tree and regeneration density varied significantly among the three populations ($F = 8.06, p = .02$ for adult tree density and $F = 14.49, p < .001$ for regeneration density; Table 2). Accordingly, higher values of regeneration and adult tree density were observed for Batia population, followed by Bondjagou and Bali populations.

Table 1. Structural Variables Used in This Study (see Curtis, 1970; Botha, Witkowski, & Shackleton, 2002; Meyer, 1952; Leak, 1964; Philip, 2002; Wiegand, Ward, Thulke, & Jeltsch, 2000; Whittaker, 1972).

<table>
<thead>
<tr>
<th>Variables</th>
<th>Formulas</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree density (trees/ha)</td>
<td>$N = \frac{n}{s}$</td>
<td>n is the total number of trees in the plot and s is the total area</td>
</tr>
<tr>
<td>Mean diameter (cm)</td>
<td>$D_{i} = \sqrt{\frac{1}{s} \sum_{i=1}^{n} d_{i}^{2}}$</td>
<td>n is the number of trees found and d_{i} the diameter of the ith tree</td>
</tr>
<tr>
<td>Basal area (m²/ha)</td>
<td>$G = \frac{1}{s} \sum_{i=1}^{n} 0.00001 d_{i}^{2}$</td>
<td>s is area of bands and d_{i} is the individual diameter</td>
</tr>
<tr>
<td>Lorey height (m)</td>
<td>$H_{i}^{n} = \sum_{i=1}^{n} \frac{g_{i} h_{i}}{s}$ With $g_{i} = \frac{1}{s} \sum_{i=1}^{n} d_{i}^{2}$</td>
<td>h_{i} is the total height of individual tree</td>
</tr>
<tr>
<td>Regeneration density (plants/ha)</td>
<td>$N = \frac{n}{s}$</td>
<td>n is the total number of plants in the plot and s is the total area</td>
</tr>
<tr>
<td>Simpson index of dominance (S)</td>
<td>$S = \frac{1}{N(N-1)} \sum_{i=1}^{n} N_{i} (N_{i} - 1)$</td>
<td>N is total number of stems and N_{i} is the number of stems in class i.</td>
</tr>
<tr>
<td>Permutation Index (P)</td>
<td>$P = \sum_{i=1}^{n}</td>
<td>j - i</td>
</tr>
<tr>
<td>Q ratio</td>
<td>$Q = N(n-1)/N_{i}$</td>
<td>N_{i} is the number of stems in class i and $N(i-1)$ is the number of stems in the i previous class</td>
</tr>
<tr>
<td>IVI</td>
<td>IVI = RelDom + RelDen + RelFre</td>
<td>RelDom is the relative dominance, RelDen is the relative density and RelFre is the relative frequency of species</td>
</tr>
</tbody>
</table>

Table 2. Mean (M) and Standard Error (SE) of Structural Parameters of *A. africana* Populations.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Batia</th>
<th>Bondjagou</th>
<th>Bali</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree density (tree/ha)</td>
<td>23.90^{a}</td>
<td>21.20^{b}</td>
<td>11.80^{c}</td>
<td>8.06</td>
<td>.002</td>
</tr>
<tr>
<td>Mean diameter (cm)</td>
<td>10.29^{b}</td>
<td>12.26^{a}</td>
<td>10.33^{b}</td>
<td>13.37</td>
<td><.001</td>
</tr>
<tr>
<td>Basal area (10⁻³ m²/ha)</td>
<td>6.55^{b}</td>
<td>9.85^{a}</td>
<td>3.94^{c}</td>
<td>14.91</td>
<td><.001</td>
</tr>
<tr>
<td>Lorey height (m)</td>
<td>11.06^{b}</td>
<td>12.99^{a}</td>
<td>11.22^{b}</td>
<td>5.20</td>
<td>.012</td>
</tr>
<tr>
<td>Regeneration density (plants/ha)</td>
<td>25.30^{a}</td>
<td>11.50^{b}</td>
<td>9.80^{c}</td>
<td>14.49</td>
<td><.001</td>
</tr>
</tbody>
</table>

Note. Values with same letters are not significantly different. F = statistic of Fisher; p = probability.
Table 2. Studied structural parameters (mean diameter, basal area, and Lorey height) also varied significantly among the three populations (p < .001 for both mean diameter and basal area and < .05 for Lorey height; Table 2). The highest values of mean diameter, basal area, and Lorey height were recorded in Bondjagou population, while Batia and Bali populations exhibited relatively similar values of mean diameter and tree height (Table 2).

Kolmogorov–Smirnov tests showed significant differences (p < .001) between the distributions of the diameters of the three populations. The results of regression analyses of SCD curves showed significant negative slope values (varying from −3.57 to −1.32) for the three populations (Table 3; p < .05), indicating more individuals in smaller than larger size classes. The high values of R^2 obtained reflect strong relationships between class centers and their respective density (Table 3). Nevertheless, the steepest SCDs slope (−3.57) was observed for Batia population, revealing more individuals in smaller size classes on Batia site, as compared with Bondjagou and Bali sites (Figure 6). The quotients (Q ratio) fluctuated between successive size classes, indicating unstable populations across the three sites (Figure 7). The higher averaged Q ratio for Batia population (1.64) and standard deviation (3.34) indicate that this population is more unstable, as compared with Bondjagou and Bali (Table 3). The Simpson Dominance Index values for the three populations were higher than 0.1 (Table 3), indicating uneven distribution of A. africana size classes across the three sites.

Effects of Heterospecific Tree Density and Environmental Factors on A. africana Population Structure

Results from linear models showed significant influence of heterospecific tree density, soil type, and slope on A. africana population structure (Table 4). Consistently, heterospecific tree density was positively associated with tree density (β = 2.00; p = .032) but negatively related to mean diameter (β = −0.15; p = .007), basal area (β = −0.30; p = .017), and Lorey height (β = −0.16; p = .033) (Table 4). Soil significantly influenced basal area and regeneration density only (p < .01; Table 4). Soil effects were shown by significantly higher values of basal area and regeneration density on silt-sand-rocky soils. On the other hand, only basal area was significantly affected by slope, with higher values on steeper sites (β = 0.10; p = .031; Table 4). We found no significant influence of mound density on A. africana population structure (p > .05; Table 4).

Heterospecific Tree Species Within A. africana Population Stands

The results of the Multidimensional Scaling of heterospecific tree species in the three populations of A. africana are plotted in Figure 8 (with stress value of 0.184). The three populations were relatively similar in terms of co-occurring species (Figure 8). More specifically, we observed a more relatively similar pattern between Batia and Bondjagou populations, as also revealed by...
the analysis of similarity result \(R = 0.61; \ p = .001 \).

When assessing the IVI (Figure 9) of the 10 most important heterospecific species for each population, it was found that *Vitellaria paradoxa* was the most important species in Batia and Bali populations, while *Lannea acida* was the most dominant for Bondjagou population. Overall, dominant heterospecific trees across the three sites were *V. paradoxa*, *L. acida*, *Pterocarpus erinaceus*, and *Detarium microcarpum* (Figure 9).

Discussion

In this study, we assessed the effects of heterospecific tree density and environmental factors on *A. africana* population structure in the PBR in Benin. We found that (a) the species populations exhibited a tree density structure with mature individuals and SCD indicating a recruitment bottleneck at the juvenile stage (10–20 cm dbh); (b)

![Figure 7](image)

Figure 7. Quotients between successive classes for each of the three *Afzelia africana* populations (Batia, Bondjagou, and Bali) in the Pendjari Biosphere Reserve.

Table 4. Linear Models Showing the Effects of the Topographic Factors and Heterospecific Density on *A. africana* Population Structure.

| Variables | Est. (β) | SE | t | p (>|t|) | \(R^2 \) (%) |
|-----------|---------|----|---|--------|-------------|
| Tree density | | | | | |
| (Intercept) | 27.99 | 12.65 | 2.21 | .036 | 25.50 |
| Soil type: SS | 14.15 | 9.90 | 1.43 | .165 | |
| Density of mound | -0.82 | 0.66 | -1.26 | .221 | |
| Slope | 0.22 | 0.39 | 0.57 | .574 | |
| Density of heterospecific trees | 2.00 | 0.88 | 2.27 | .032 | |
| Mean diameter | | | | | |
| (Intercept) | 11.82 | 0.76 | 15.54 | .001 | 28.29 |
| Soil type: SS | -0.83 | 0.59 | -1.40 | .173 | |
| Density of mound | 0.03 | 0.04 | 0.82 | .418 | |
| Slope | 0.02 | 0.02 | 0.90 | .377 | |
| Density of heterospecific trees | -0.15 | 0.05 | -2.92 | .007 | |
| Basal area (m²/ha) | | | | | |
| (Intercept) | 7.40 | 1.50 | 4.99 | .001 | 59.14 |
| Soil type: SS | -5.00 | 1.20 | -4.31 | .001 | |
| Density of mound | 0.10 | 0.10 | 1.79 | .085 | |
| Slope | 0.10 | 0.00 | 2.29 | .031 | |
| Density of heterospecific trees | -0.30 | 0.10 | -2.56 | .017 | |
| Lorey height | | | | | |
| (Intercept) | 12.52 | 1.02 | 12.17 | .001 | 19.96 |
| Soil type: SS | -0.95 | 0.81 | -1.18 | .247 | |
| Density of mound | 0.04 | 0.05 | 0.78 | .443 | |
| Slope | 0.03 | 0.03 | 0.81 | .424 | |
| Density of heterospecific trees | -0.16 | 0.07 | -2.25 | .033 | |
| Regeneration density | | | | | |
| (Intercept) | 3.62 | 0.37 | 9.74 | .001 | 46.71 |
| Soil type: SS | -0.86 | 0.27 | -3.12 | .005 | |
| Density of mound | -0.00 | 0.01 | -0.10 | .924 | |
| Slope | -0.00 | 0.01 | -0.10 | .920 | |
| Density of heterospecific trees | 0.00 | 0.02 | 0.17 | .864 | |

Note. Est = estimate; SE = standard error; SS = sand-silt soils.
heterospecific tree density was positively associated with *A. africana* tree density but negatively related to mean diameter, basal area, and Lorey height; (c) the species basal area and regeneration density varied with soil type, with higher values being recorded on silt-sand-rocky soils; (d) the species basal area increased with increasing site slope; and (e) the studied populations were relatively similar in terms of co-occurring species.

The lower densities of *A. africana* individuals in the 10 to 20 cm diameter class, as compared with the <10 cm, 20 to 30 cm, and 30–40 cm classes, suggest a recruitment bottleneck at the juvenile stage, leading to low recruitment potential, despite higher seedling and sapling densities. Similar observations were made by Venter and Witkowski (2010) on the African baobab *Adansonia digitata* L., across different habitats. The bottleneck in the recruitment patterns, as observed in this study, might have resulted from mammal browsing, natural and artificial fires. Reportedly, the genus *Afzelia* and other woody species are well appreciated by elephants during grazing, debarking, breaking, and uprooting activities.
Gle`le` Kakaı¨, Kyndt, Houinato, & Sinsin, 2013; process (Bonou et al., 2009; Houehanou, Assogbadjo, et al., 2016). Interestingly, these heterospecific species were constantly found across the three populations. Such a coexistence pattern can generally be explained by difference in resource use, longevity, herbivore defense, and leaf characteristics, which may promote complementary resource use (Mensah, du Toit, & Seifert, 2016). More interestingly, it can be inferred that A. africana adult populations develop conservative strategies on steeper sites.

The results on species composition of the three A. africana populations are in line with recent insights that P. erinaceus, L. acida, and V. paradoxa are key A. africana co-occurring tree species (Mensah, Houéhanou, et al., 2016). Interestingly, these heterospecific species were constantly found across the three populations. Such a coexistence pattern can generally be understood by increase in resource use, longevity, herbivore defense, and leaf characteristics, which may promote complementary resource use (Mensah, du Toit, & Seifert, 2016). More specifically, the observed
co-occurring species patterns may be the outcome of trade-off between colonization and competitive ability between conspecific and heterospecific individuals. These patterns may also result from processes and mechanisms such as the Janzen-Connell hypothesis, the recruitment limitation, and the spatial segregation (Barot, 2004).

Implications for Management and Restoration

The PBR is one of the remaining large fauna reserves in West Africa, managed for the conservation of both wild animals and tree species. This study suggests a bottleneck in *Afzelia africana* recruitment patterns, possibly resulting from mammal browsing, natural and artificial fires. Biological conservation in biosphere reserve may not always guarantee successful plant species recruitment across successive size classes, because of other potential factors affecting plant species dynamic. For instance, we argued that increased browsing and breakage activities of protected mammals such as elephants in the core zone of the reserve would negatively affect the recruitment patterns of *A. africana*. Soil patterns and topographic characteristics also partly influenced *A. africana* structure and dynamic. The study revealed higher basal area and regeneration potential on silt-sand-rocky soils, suggesting soil dominated by rocks and silts as suitable environment for the species. While this finding is crucial for silvicultural actions that target restoration, it will be also important to reduce the disturbance impacts of herbivore and frequent fires through better monitoring of *A. africana* populations and management of fire regime in the area. More specific actions are needed, especially identification and protection of seedlings and saplings from herbivores using metallic barriers. The economic returns from touristic activities in the reserve can serve to support the costs of protecting *A. africana* juveniles. Contrary to our expectation, high slope was positively associated with higher basal area, probably a result of the species conservative strategies. A better understanding of the species physiological strategies in relation to potential biotic and abiotic factors governing the dynamic of the species recruitment patterns is important to improve our understanding of the ecology of the species for its restoration in disturbed habitats.

Acknowledgments

The authors are grateful to Jean Didier Akpona, Roméo Tohoun, and Bruno Lokonon for their assistance.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was funded by the International Foundation for Science and the Committee on Scientific and Technological Cooperation (COMSTECH) through a research grant no. D 5660–1 provided to Dr Sylvanus Mensah.

References

"africana" Sm. habitat in the Lama forest reserve of Benin.

